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Edge Length Interpolation

Carlos Rojas, Alex Tsui, Stewart He, Lance Simons, Shengren Li, Nina Amenta
University of California, Davis

Abstract

We propose a scheme to interpolate between a set of two or more 3-dimensional triangulated meshes with corresponding connectivity.
The principle behind this is that meshes, when viewed as vectors of edge lengths, can be seen as points in a Euclidean shape space.
Within this space, mesh interpolation corresponds to traversing straight lines between points, and due to the Euclidean structure
of the underlying shape space, we can easily take averages and perform statistical shape analysis. We perform experiments in three
important applications to illustrate these ideas. First, we demonstrate interpolation between various shapes and poses. Second, we
illustrate statistical analysis on a large dataset of faces, calculating mean shapes and exploring new shapes by moving along the
principal modes of variance of the dataset. Finally, we visualize morphs corresponding to conformal mappings, an important class
of deformations, which form a subspace of the edge-length space.

Key words: shape space, rigidity, shape interpolation, morphing, conformal mapping

1. Introduction

Let us begin with the mathematical description of the
problem, and then discuss its relevance to computer graph-
ics.

1.1. The problem

Consider a triangle mesh T and the graph G describing
its vertex-edge connectivity. T fixes the vertex locations in
R3, which obviously fixes the edge lengths, and these edge
lengths are invariant under a rigid motion (rotation and
translation) of the vertices. We might wonder if, conversely,
fixing the edge lengths fixes the vertex positions up to a
rigid motion?

In one sense this is nearly true: almost all closed man-
ifold triangle meshes are rigid. Euler conjectured in 1766
that all closed polyhedral surfaces with rigid faces are rigid.
Cauchy [8] proved that convex polyhedra with rigid faces
are rigid, and Gluck [13] showed that most genus-zero trian-
gulated polyhedra, even those that are not convex, are rigid.

Only comparatively recently did Robert Connelly find an
example of a manifold, embedded triangle mesh that was
not rigid [10]. A recent ebook by Igor Pak [22] gives an
excellent overview of this area; we touch on this again in
Section 4, where we consider shape spaces.

Fig. 1. Two different rigid embeddings of the same triangulated

graph G that achieve the same set of edge lengths. The top vertex
of the icosohedron on the left is “pushed” into the interior of the

non-convex icosohedron on the right.

We can therefore be pretty certain that any embedding of
G that we find will be rigid. The difficulty with solving for
the vertex positions up to a rigid motion is that there might
be, and in fact usually are, not one but a finite number



of discrete possible rigid embeddings T1, . . . , Tk achieving
the given set of mesh edge lengths; see Figure 1. So the
problem which takes the abstract graphG and a set of edge
lengths as input, and produces an embedding T as output,
generally has many solutions.

In this paper we consider an easier problem. We are given
an input set of two or more embeddings of G, and we want
to interpolate between them by linearly interpolating their
edge lengths. This is not always possible; in Figure 1, the
edges adjacent to the red vertex would have to get smaller
and then longer again when interpolating from one confor-
mation to the other. But in many interesting cases - often
when the embeddings are different poses of the same fig-
ure, when they are different instances from the same class,
such as faces, bones or other anatomy, or in general when
they are mild deformations of the same shape - it seems
to be. The problem of constructing an interpolating mesh
is easier than the general embedding problem since the in-
put meshes can be used to construct a good approximation
with which to begin an optimization algorithm. Our em-
bedding algorithm has two steps, a non-linear optimization
that finds a set of dihedral angles that respect the given
edge lengths, and a linear step that finds a set of vertex po-
sitions respecting both the edge lengths and the dihedrals.

1.2. Relevance to graphics

This computational problem is useful in computer graph-
ics because the edge-length vector associated with an em-
bedding T of G forms a description of the object shape
that has some obvious nice properties. First, shape can be
defined technically as the geometric quantities that are in-
variant under some set of transformations. The edge-length
vector is inherently invariant under translation and rota-
tion, so it cleanly captures shape modulo rigid motion,
with a small loss of information (due to the multiple em-
beddings issue). Second, the edge-length vector defines the
graph metric on the surface, in which geodesic distance is
measured by graph distance on the mesh. Interpolating the
edge lengths produces deformations that are as-isometric-
as-possible in this simple discrete sense.

We consider three applications of this basic idea of rep-
resenting a shape by its graph G and its vector of edge
lengths. In Section 3, we consider interpolating poses by in-
terpolating their edge length vectors and using the method
described above to embed the sequence of vectors into a
sequence of 3D meshes. The as-isometric-as-possible prop-
erty gives us interpolations between poses that naturally
reflect the articulated motion, thus combining in one frame-
work the morphs usually produced by a skeletal frame-

work like linear blend skinning and the free-form detail
changes accomplished with blend shapes. In Section 4 we
argue that shape distances measured by Euclidean differ-
ences of edge-length vectors reflect meaningful shape dif-
ferences that are either missed, or require complex calcula-
tions, in other shape space definitions. Finally in Section 5
we visualize a discrete conformal mapping as a morph. Dis-
crete conformal mappings modify a shape by modifying its
edge lengths, and we again use our embedding algorithm to
map the edge length vectors to meshes in R3. The embed-
ding algorithm thus partially answers the question of how
to invert conformal mappings to parameter spaces.

This paper presents a novel approach to a fundamental
problem in geometric computation, with ties to the inter-
esting mathematical basis of mesh deformation.

1.3. Prior work

Shape spaces have been studied extensively in the con-
text of the statistical analysis of anatomical shape. Even
though it is well-established that shape spaces invariant to
rotation are non-Euclidean [15], Euclidean spaces are used
in practice because they allow the full range of statistical
methods. In morphometrics [5,26] a Euclidean space is typ-
ically computed by aligning landmark points representing
the specimens via Generalized Procrustes Analysis (GPA)
and then working in the 3n-dimensional coordinate space.
Statistical Shape Analysis [12] takes this approach farther
by deriving statistically useful feature spaces from this fun-
damental space. In the framework known as Euclidean Dis-
tance Matrix Analysis (EDMA) [18], the coordinates of the
Euclidean shape space are the n2 elements of the distance
matrix of the landmarks. It is also possible [28] to use only
the lengths of a sufficiently large set of “trusses” to ensure
the rigidity of the point set. In R2 the choice of truss edges
seems somewhat arbitrary, but our key observation is that
the edges of a mesh representing the object surface are a
natural choice in R3!

Allen et al’s work on the space of human body shapes [2]
was a landmark in the use of shape spaces in data-driven
modeling in computer graphics. After fitting corresponding
template meshes to their scanned data, they constructed a
Euclidean shape space using PCA vectors computed from
the template vertex positions. Later work considered hu-
man figures captured in different poses [1,3]. Interpolating
facial expressions (blend shapes) using the Euclidean shape
space of vertex positions is a venerable [23] mainstay of fa-
cial animation.

Kilian et al. [16] emphasized shape spaces in computer
graphics, and their paper is the most relevant antecedent to
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this work. They considered the computation of geodesics in
two curved spaces: an approximation to the curved Kendall
shape space, which is as-rigid-as-possible, and an approx-
imation of a non-Euclidean as-isometric-as-possible space.
The computational and mathematical issues concerning
geodesic computation, averaging and parallel transport in
those spaces, which are interesting but computationally in-
tensive, are all easy in a Euclidean space.

Sederberg [24] proposed morphing two-dimensional poly-
gons by interpolating their edge lengths and the angles.
Winkler et al. [32] use a similar idea in 3D, interpolating the
dihedral angles as well as the edge lengths, and fitting the
model together by a multi-resolution least-squares compu-
tation. Our approach differs in that we use the fact that a
global zero-error solution for a desired set of edge lengths
usually exists, and we solve for the correct dihedrals. Their
multi-resolution method is much faster than ours, however.
Another multi-resolution method due to Chu et al. [9] finds
a decomposition of the mesh based on a set of input poses,
using mean-shift clustering, and then reconstructs an in-
terpolated pose.

2. Algorithm

The straight-forward way to approach the embedding
problem would be to solve for the vertex positions directly,
given the edge lengths. But there are two major difficulties
with this idea. Since we know that there will be many glob-
ally minimal solutions for any set of input edge lengths, we
are guaranteed that any formulation of the problem will
be non-linear and high-dimensional. It is very important,
therefore, to start from a good approximate solution. It is
not clear how to choose this approximate solution from the
vertex positions of the meshes to be interpolated, since the
vertex positions move, perhaps quite a bit, in a non-linear
and mesh-dependent way during the interpolation. A sec-
ond problem is that the vertex positions depend on an arbi-
trary rotation and translation, so that some regularization
is required to select a canonical set. Generally this is done
by fixing the position of one triangle, but the optimization
then has to propagate this arbitrary choice to the rest of
the mesh. This further complicates an already fragile cal-
culation.

Instead, we work in two steps. First we solve for the di-
hedral angles of the mesh. These are also invariant under
rotation and translation, so we avoid having to choose a
canonical representation when doing the nonlinear opti-
mization, and they generally change smoothly during the
morph so we can select good estimated solutions by linearly
interpolating the dihedrals of the input meshes. Once we

have the dihedrals, the mesh is determined up to rotation
and translation, and we find the vertex positions by solv-
ing two linear systems, one for rotation and the other for
translation, roughly as in [20].

2.1. Solving for dihedrals

Consider the spherical vertex figure formed by intersect-
ing the polyhedron with an infinitesimally small sphere cen-
tered at a vertex v (see Figure 2). The boundary of the
intersection is a spherical polygon with sides S1, S2, . . . Sk,
all great circle arcs, and vertices u1, . . . , uk, where k =
degree(v). The arc lengths of the sides are the angles of the
triangular faces at v, and the angles at the vertices ui of
the spherical polygon are the dihedrals. Now consider the

Fig. 2. The vertex figure is the intersection of an infinitesimal sphere
with the mesh at a vertex. Consider a ladybug taking a closed walk

along the vertex figure. We equip her with a local coordinate system

that is centered at the vertex, so that she is always at position (1, 0, 0)
and facing (0, 1, 0). To cross a triangle, the ladybug rotates around

the z-axis of her local coordinate system, which passes through the

origin. To rotate at a corner of the vertex figure, she rotates around
the x-axis of her local coordinate system, on which she sits.

vertex figure on the unit sphere, and consider a ladybug
walking along it, controlled by a local coordinate system,
as in Figure 2. Each step in her walk is either a rotation
Xi around the x-axis (through the bug, at a vertex of the
spherical polygon) or a rotation Zi around the z-axis (walk-
ing an edge of the spherical polygon). So her entire path
is a series of matrix multiplications (right-multiplication of
matrices is rotation in the local coordinate system) such
that:

Z0X0Z1X1 . . . ZkXk = I (1)

where I is the identity matrix; after the walk she is back
in her original position and orientation. The Zi are all con-
stant, determined by the input edge lengths; our job is to
determine the Xi, each of which is defined by a rotation
angle αi.

For an arbitrary set of dihedral angles Xi, the path does
not close; there is some error both in the position and the
orientation of the bug. We define an the error function at
vertex v:
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Ev = ||Z0X0Z1X1 . . . ZkXk − I||2F (2)

where F indicates the Frobenius norm, that is, the error is
the sum of the squares of the elements of the matrix. The
overall energy function for the mesh is:

E(A) =
∑
v

Ev (3)

where A is the vector of dihedral angles αi.
We use the non-linear solver fmin l bfgs b from the

SciPy package [7], since it works well on problems with
many local minima. This implementation of the BFGS tech-
nique requires taking the first and second derivatives of the
energy function with respect to each variable at each iter-
ation. The error will be the same wherever we break the
cycle, so we might as well assume it is broken at Xk. The
other Xi do not depend on Xk, so to compute the deriva-
tives with respect to αk we can rewrite each term of the
energy function

Mk =Z0X0Z1X1 . . . Zk (4)

Ev = ||MkXk − I||2F (5)

where Mk is a rotation matrix independent of αk, and

Xk =


1 0 0

0 cosαk − sinαk

0 sinαk cosαk

 (6)

A little calculation, using the fact that Mk is orthonormal,
shows that the degree two terms in sinαk and cosαk cancel
out, and we get

Ev(αk) = 6− 2[mkj
11+

(mkj
22 +mkj

33) cosαk + (mkj
23 −m

kj
32) sinαk]. (7)

leaving us with the simple first and second derivatives with
respect to αk:

∂Ev

∂αk
= −2((mj

23 −m
j
32) cosαk − (mj

22 +mj
33) sinαk) (8)

and

∂2Ev

∂α2
k

= 2((mj
22 +mj

33) cosαk + (mj
23 −m

j
32) sinαk). (9)

A specific αk appears in two of the vertex terms, say u and
v (with the same sign!), so that

∂E

∂αk
=
∂Ev

∂αk
+
∂Eu

∂αk
(10)

meaning that

∂E

∂α
= −2([(mv

23 −mv
32) + (mu

23 −mu
32)] cosαk−

[(mv
22 +mv

33) + (mu
22 +mu

33)] sinαk) (11)

and similarly for the second derivative.
We initialize the search for the vector A of dihedral an-

gles by averaging the dihedrals of the input meshes at each
edge. This works surprisingly well in most of the cases we
tested, but it is not guaranteed to converge to a global min-
imum (a set of dihedrals that form a closed mesh), or to the
minimum we desire for a smooth interpolation. We discuss
a few situations where it failed in Section 6.

2.2. Solving for vertex positions

Given the dihedral angles, it is clear that the mesh is
rigid and we can compute a set of vertex positions that
can realize the mesh. The straightforward linear system to
achieve this is very ill-conditioned, so we use a more robust
two-step approach adapted from the Frenet frames method
of Lipman et al. [20]. A similar construction that takes edge
lengths and dihedrals as input and produces a mesh output
was recently proposed by Wang et al. [31].

We first define an orthonormal coordinate frame at each
vertex v, by arbitrarily putting the local x-axis on the edge
with minimum ID adjacent to v, putting the local y-axis in
the direction of, and on the plane of, the triangle to the left
of that edge, and letting the z-axis be their cross-product.
The first step is to find, for every edge uv, a local rotation
Mu,v that transforms the local coordinate system of u to
the local coordinate system of v. This is possible because
we know the dihedral angles of the edges adjacent to u and
v.

The next step is to use these local changes to compute
the orientations of every local coordinate frame in a single
global coordinate system. Let Gv be the global rotation at
v. Then we have the system of equations

GvMv,u −Gu = 0

for every edge u, v. We treat this as nine linear equations,
one for each element ofGu, ignoring the constraint that the
Gu must be orthonormal. We solve the over-constrained
system by least-squares, fixing the rotation at vertex v0.

While a perfect solution to this set of equations should
exist and should be a set of rotation matrices, because
of numerical error and because the linear system is ill-
conditioned, the Gv are not orthonormal in practice. We
therefore orthogonalize the resulting Gu matrices, using
Singular Value Decomposition [21].
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Fig. 3. Using edge-length interpolation to combine skeletal motion and blend shapes for animation. The original arm mesh (upper left) is
bent using linear blend skinning, producing a self-intersection (upper middle). The bent arm pose is then cleaned up interactively to remove

the self-intersection (upper right). Four intermediate steps of edge-length interpolation between the original straight arm and the cleaned-up

bent arm interpolate both the skeleton-derived motion and the edits.

vertices time error

hand 10,000 9.1 min 0.172

centaur 15,768 9.6 min 2.601

face 58,327 20.6 min 0.077

arm 2,502 3.9 min 0.053

Table 1

Time is mean total running time per embedding in minutes. Error

is the error of the non-linear optimization from Equation 3. For the
arm, face and hand the statistics are over all frames of the video.

Given the global rotations Gu, we then construct the
global vertex positions. For every edge u, v, let uv be the
position of u in the coordinate system at v. Then the real
positions of u and v satisfy

v +Gvuv − u = 0

Again, we initialize the position of v0 and solve by least-
squares. A robust direct solver for sparse, ill-conditioned
systems is required in both these steps [6]; we used the
spsolve function in SciPy.

2.3. Timing and Performance

Timings and errors are shown in Table 1. In rendering
dense sequences of embeddings for video, we found glitches
associated with some specific shape transitions, leading to
the longer running times and higher errors. We discuss this
further in Section 6.

3. Pose Interpolation

Pose interpolation should be as-isometric-as-possible
[16], since maintaining a near-isometry maintains the
nearly-rigid parts of the mesh. We find that edge-length
interpolation, being as-isometric-as-possible, indeed pro-
duces intermediates that are visually appropriate, without
any of the well-known artifacts produced by interpolation

Fig. 4. Linearly interpolating the edge lengths of a triangle mesh be-
tween different poses produces interpolated meshes that are as-iso-

metric-as-possible. Here, the input meshes in blue are different poses

of an articulated model. The edge-length interpolated poses in gray
inherently respect the structure of the articulated motion. Each edge

length in a gray mesh is a weighted average of the corresponding
four edge lengths in the blue input meshes. The difficult step in the
process, that we treat in this paper, is producing the vertex positions

from the averaged edge lengths.
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of vertex positions. In Figure 4 we show bilinear interpola-
tions along a circular path. Figure 5 gives an example of
barycentric interpolation along a spline.

Animation of 3D objects is mostly done by interpolating
keyframe poses. When the position of the mesh is controlled
by a skeleton, the keyframes are specified by joint angles,
which are interpolated in a joint-angle space. While this
handles the basic pose, fixing skinning artifacts, specifying
non-skeletal motion, and other details require additional
solutions. One important tool here is blend shapes, meshes
interpolated in the space of vertex positions, that are com-
bined with joint-angle interpolation to adjust shapes. There
have been many variants of this idea [19,25,17]. Interpolat-
ing in edge-length space could make this process simpler.
For instance, it might be possible to do initial animation
in joint space, edit the resulting meshes for cleanup and
details, and then interpolate the edited meshes directly as
keyframes in edge-length space. We show an example of
this workflow for cleaning up a bent arm in Figure 3.

Finely detailed poses of real people are increasingly be-
ing captured as meshes or partial meshes [2,3,1]. Similarly,
capturing human motion as surface meshes brings a huge
amount of data to the problem of generating moving char-
acters [33,30], and the advent of depth cameras like the
Kinect should make this even more practical [14]. Fitting
the raw data with a common template mesh, and then in-
terpolating the corresponding meshes gives a way to in-
terpolate captured poses or to connect together captured
mesh motions, without the need to identify a skeleton. It
is necessary to find the corresponding meshes, but this is
often done as part of data clean-up anyway.

Since computing embeddings is computationally expen-
sive and subject to occasional glitches, we produced the
hand and cat video clips by embedding the mesh for every
20th or 25th frame as a sub-keyframe, and then interpo-
lating between the sub-keyframe meshes by linearly inter-
polating edge lengths and dihedrals. This was faster and
produced smoother motions.

4. Shape analysis

In this section we consider the shape space E associated
with a combinatorial triangle mesh graph G. The points of
E are vectors of edge lengths and the metric on E is the
usual Euclidean distance. A drawback is that one point of
E corresponds to a finite set of meshes, not just one. But
the affordances are the fact that E is Euclidean and that it
is inherently invariant under rotation and translation. The
algorithm of Section 2 allows us to (usually) realize points
of E computed by interpolation as meshes in R3.

By Euler’s formula, a triangle mesh homeomorphic to
the sphere has 3n− 6 edges, so this is the dimension of E .
Note that this is conveniently the 3n degrees of freedom of
the possible vertex positions for G, minus the six degrees of
freedom for rotation and translation. So E really is a 3n−6-
dimensional set in R3n−6. When one edge is removed from
G, the remaining structure becomes flexible [22]; equiva-
lently, one edge length can be changed independently of the
others while remaining in the space E .

Unfortunately, E has boundaries. A set of edge lengths
has to obey the triangle inequalities, imposing 3t linear in-
equalities, where t is the number of triangles. Fortunately,
if an edge-length vector e ∈ E is computed by linearly in-
terpolating a set of input edge-length vectors that obey the
triangle inequalities, so must e. But E has other boundaries
as well. For instance, a valid triangle mesh cannot include a
vertex where three triangles meet, one with angle π/2 and
the other two with angles π/5; the angles at each vertex
must satisfy a triangle inequality as well. These boundaries
are unfortunately non-linear in the edge lengths, and can
be violated when interpolating input meshes with vertices
spanning very small solid angles. Nonetheless, in practice,
we have ignored the boundaries of E .

Let us compare E to the Generalized Procrustes shape-
space P often used in practice for statistical shape analysis,
and, for instance, in [2]. Given a collection of input shapes,
represented as corresponding clouds of landmark points (in
our case, the mesh vertices), the GPA process aligns them,
under scale, translation and rotation, into a single global
coordinate system so as to minimize the total RMS dis-
tance between all pairs of corresponding points. The 3n-
dimensional space formed by the point coordinates then
is taken as P, where the RMS distance between two input

Fig. 5. The gray poses of the hands are interpolated from the three

blue poses by interpolating their edge lengths. This sequence can be

found in the video.
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Fig. 6. Corresponding meshes are fitted to the scanned face meshes. Edge-length interpolation between the corresponding meshes produces

the change of expression.

point sets is the same as the Euclidean distance between
the two points in P.

The alignment is intended to “remove” the part of the
geometric difference due to scale, rotation and translation.
But for even moderately complex shapes, global alignment
cannot simultaneously align all the parts. This is illustrated
in Figure 8. When this happens, the RMS distance ends up
reflecting the misalignment between corresponding parts
and misses similarities between the parts themselves.

Figure 7 shows an experiment comparing P and E on a
synthetic example meant to evoke Figure 8. We varied a set
of parameters to produce barbells with two kinds of ends,
both with two different lengths for the bar. To make a fair
comparison, we need to make E invariant under scale as
well as rotation and translation. We scale the input edge
length vectors ei so that∑

i

ei = 1 (12)

Since this is a linear equation, it defines a hyperplane in E
containing all of the inputs, maintaining the linearity of the
space. Normalizing for scale shrinks the barbells with the
longer bar in both cases. When measured by the aligned
RMS distance, the two long barbells are clearly more similar
than the two short ones. When measured by the scaled edge-
length distance, the distances become more comparable.

Figure 6 shows an example of the shape analysis workflow
for scanned data. The meshes of the scanned faces are not
corresponding. We manually place eight landmark points
on the facial features, and then we use a method similar to
that of Tsui et al. [29] to establish a smooth corresponding
mesh that includes the landmark points on each surface.
Interpolating the corresponding meshes for the faces pro-
duces the change in expression.

Alternatively, we can consider the set of faces in the space
of edge length vectors and explore the space. In particular,
we computed PCA vectors on a set of 600 scanned faces
from the FRGC 2.0 dataset. The set of faces are made up
of happy (green), angry (red), and neutral (black) exam-
ples, classified based on their respective facial expression.
For any given happy/angry example of a particular indi-
vidual, we have corresponding data of the same individual
with a neutral expression. Projecting each of the faces onto
the top three principal components gives us a rough clus-
tering shown in Figure 9. While the variance explained by
the three eigenvectors accounts for only 12% of the total
variance in the dataset, there is a semblance of shape dif-
ference captured in the edge lengths, particularly between
the neutral and happy expressions.

As a further example of exploring edge length space, we
ask the question of how we can visualize new facial expres-
sions that are representative of the individual expressions
within our dataset (see Figure 10). As mentioned above,
the individual faces with facial expressions are paired with
a corresponding neutral expression. We take the difference
of the edge length vectors of these two expressions. We
then average the difference across all paired examples in
the dataset to compute an average edge length difference
vector. Finally, we add this difference vector to the average
neutral face to produce a new edge length vector, which we
use to reconstruct a previously unseen face. This demon-
strates the ease of exploring the shape space.

5. Conformal mappings

Conformal mapping is an important mathematical tool
in geometry processing, used mainly for parameterization
and as a tool for establishing surface correspondences
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Fig. 10. The middle face is the average of all the neutral faces. The two outer faces represent the average neutral face plus the average

difference between the neutral and happy/angry face of a particular person.

through parameterization. It is sometimes possible, how-
ever, to use conformal maps for interpolation. In the
smooth case, when A and B are any two smooth surfaces
homeomorphic to the sphere, then there is a conformal map
µ() between A and B. Recent work in computer graphics
[27,4] has led to discrete analogs of this idea. For instance,
following [27], let ai,j , bi,j be the lengths of edge i, j in two
triangulated meshes A,B homeomorphic to the sphere. We
associate a conformal factor ui to each vertex vi; we can
think of ui as a scaling factor that expands or contracts the
neighborhood of vi. We say thatB is discretely conformally
equivalent to A if there is a set of factors u such that

bi,j = e(ui+uj)/2ai,j (13)

Using the methods of [27,4], we can compute a set of con-
formal factors u that map the edge-lengths of any triangu-
lated meshA to a discretely conformally equivalent meshB
on the sphere. In Figure 11, we show interpolations visual-
izing this mapping from a face mesh A as a morph. At each
time step, we linearly interpolate the factors ui, beginning
at zero and ending at the computed value controlling the
edge lengths on the sphere, use the interpolated conformal
factors to produce interpolated edge lengths, and finally
embed the edge lengths using the algorithm of Section 2.
We initialize the dihedrals as usual by linearly interpolat-
ing the dihedrals at the endpoints of the morph.

Two arbitrary embeddings T1, T2 of a mesh with combi-
natorial structure G are not, in general, discretely confor-
mally equivalent; conformal equivalence is a more restric-
tive property. However, Crane et al. [11] recently gave a
computational framework for mesh deformation using con-
formal maps, that preserve local details such as texture and

mesh quality.

6. Limitations and discussion

This work certainly has limitations, some perhaps asso-
ciated with our implementation and others inherent in the
idea. The computation is very slow, since each embedding is
computed by solving the high-dimensional non-linear sys-
tem described in Section 2.1. This could probably be ad-
dressed by a more sophisticated approach, for instance us-
ing mesh multiresolution and, when computing sequences,
leveraging redundancy.

In the videos, computing every frame as an independent
embedding was slow and there were glitches due to poor
embeddings. Embedding only sub-keyframe meshes and in-
terpolating between them using the method described in
Winkler [32] led to much nicer results.

It is not completely surprising that there are cases in
which the embedding algorithm does not work for interpo-
lation. For example, in the simple situation in Figure 1, the
only nearby minima for intermediate frames we might want
to generate using interpolated dihedrals would be the two
input meshes. We believe that the conformally mapped face
near the end of the sequence involves similar local changes,
where a region shifts from convex to concave or visa versa.
Other situations in which a crease appears or disappears
seem to similarly cause jitter. Detecting and handling such
jumps in the embedding is clearly an issue for further re-
search.

Another simple situation in which there is an issue in-
volved a quad mesh on a torus morphing to a tall barrel
shape by undergoing a large anisotropic deformation. We

8



Fig. 11. Conformally mapping a scanned face (with the back of the head closed off) to the sphere. The discrete conformal factors are all

zero on the left, and form a function γ(v) on the vertices v ∈ V on the spherical mesh on the right. The intermediate meshes are computed

by setting the conformal factors to kγ(v), for k = 1/4, 1/2, 3/4 as we go from left to right, computing the edge lengths from the conformal
factors, and then embedding.

Fig. 12. The graph on the left depicts the ratio of total RMS error, between the linearly interpoliated edge lengths and the reconstructed

meshes, to the sum of all linearly interpolated edge lengths. The red line represents the result from Winkler and the black line represents
ours. The ratio is computed 100 times at even intervals while interpolating from the bent arm to the straight arm in Figure 3. The total error

in Winkler’s method peaks at .5% at around frame 50 while our error peaks at about .75%. The graph on the right shows the maximum

relative error. Again Winkler is the red line and we are the black. We can see that in the worst case, around frame 15, the worst edge in
Winkler’s reconstruction is more than 40% incorrect. Our worst case occurs at frame 53, and is only 15% incorrect.

added a randomly chosen diagonal to each quad to produce
a triangle mesh. Stretching the quads only in the vertical
direction distorted the quads, since in a quad the diagonals
do not scale linearly with the vertical edges. Linear edge-
length interpolation created uneven surfaces, and, in the
worst case, a completely incorrect embedding as a double-
covering of the torus. Interpolating the edge length squared
rather than edge length completely fixes this problem, but
we do not prefer it as a general solution for interpolation
because large and small edges grow at different rates. On
the other hand, this example does indicate that the embed-
ding method works on objects of higher genus.

Finally, our approach resembes the technique by Win-
kler [32]. The main difference is the non-lineaar step de-
scribed in Section 2.1. In a comparison between the two

methods we found that Winker [32] produced lower RMS
difference between the reconstructed edge lengths and the
interpolated edge lengths. However, our approach results
in a lower maximum error, seen in Figure 12.
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